## USN

## Sixth Semester B.E. Degree Examination, June/July 2015 Aerodynamics - II

Time: 3 hrs. Max. Marks; 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART - A

- 1 a. Explain with neat sketch, Kulta Joukourshi theorem for the surface of a body of arbitrary shape. (08 Marks)
  - b. Consider non lifting flow over arbitrary body and describe the procedure to calculate the pressure co-efficient at i<sup>th</sup> control point through source panel method. (12 Marks)
- 2 a. Discuss briefly the following:
  - i) Vortex filament
- ii) Induced drag
- iii) Biot-Savarh law
- iv) Helmholtz's vortex theorem
- (16 Marks)

b. Explain the importance of aspect ratio of finite wing.

- (04 Marks)
- 3 a. Derive the governing velocity potential equation for an inviscid compressible, irrotational subsonic flow over a body immersed in an uniform stream. (12 Marks)
  - b. Explain in brief the Prandtl Glauset compressibility correction.
- (08 Marks)
- 4 a. Derive the relation for critical pressure coefficient in terms of free stream mach number.

(10 Marks)

b. Explain how to find the critical mach number for an air foil.

- (06 Marks)
- c. The critical mach number for an airfoil is 0.62. Find the critical pressure co-efficient  $(\gamma = 1.4)$ .

## PART - B

- 5 a. Derive an expression for lift co-efficient and induced drag co-efficient is term of circulation strength  $\hat{F}(y)$  for a finite wing, through Prandtl's classical lifting line theory. (14 Marks)
  - b. Explain down wash and induced drag.

(06 Marks)

(08 Marks)

- 6 a. Explain with neat sketch, the boundary condition for a 2D (or) axially symmetric body.
  - b. What are the different types of small perturbation flows? Briefly explain with relevant sketches. (08 Marks)
- 7 a. Discuss the advantages of swept wings modern airplanes.
  - b. What are high lift devices? List them. Explain their effects on aerodynamics characteristic. (12 Marks)
- 8 a. Derive the Blasuis equation for a incompressible flow over a flat plate. (12 Marks)
  - b. What is the boundary layer theory? Explain laminar, turbulent boundary layer and transition over a flat plate at low speed. (08 Marks)